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Abstract

This paper reports the experiments carried out
for the semantic indexing (SIN) and the instance
search (INS) tasks at TRECVID 2012. For the SIN
task, we evaluated two recently proposed features
with a simple one-versus-all linear SVM framework.
the first one is a motion histogram based on trajec-
tory vectors. The second one is a bag-of-visterm
that take into account the spatial consistency of
descriptors. In the INS task, we proposed a de-
scriptors based on local descriptor matching able
to scale to the considered corpus. A second con-
tribution for INS consisted in studying several late
fusion schemes. Preliminary experiments were con-
ducted on the INS 11 corpus to choose the best
strategy, leading to results in the top 5% of past
results. While these preliminary results were very
promising, 2012 results are above the median of
participating runs, but far from reproducing pre-
vious year performances. The significance of the
results is thus studied, showing that significant dif-
ference between two runs is not strictly correlated
to the sorted average scores.

1 Semantic Indexing

1.1 Introduction

The TRECVID 2012 semantic indexing (SIN) task
[1] is described in the TRECVID 2012 overview pa-
per [2]. We evaluated two specific features recently
proposed [3, 4] in the context of the task. In these
notes, we report the scores obtained through used
a very simple classification scheme (one-versus-all
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linear SVM). The features have also been proposed
in the context of the IRIM participation [5] .

1.2 Feature extraction

Two different low-level feature are investigated in
the Semantic Indexing task. First we consider
the video motion information with a bag-of-point-
trajectory. We also take into account the video
appearance through the bag-of-visterm.

1.2.1 Bag-of-point-trajectory

These features captures motion information about
local patches motions in videos. Two steps are re-
quired to construct the point-trajectory extraction
and their aggregation.

Following [6], dense trajectories have been used
as local features. Keypoints are densely sampled
at multiple spatial scales in each of video frames.
Dense optical flow is used to match a point from a
frame f to the next frame f + 1. Trajectories are
built by accumulating point correspondences over
successive frames. At each frame, a new trajectory
is started on a keypoint p if no trajectory is present
in a neighborhood.

We characterize the motion using motion his-
tograms based on trajectory vectors, as introduced
in [3]. Let t = {(x1, y1), ..., (xL, yL)} be a trajec-
tory of size L where (xi, yi) denotes the point po-
sition at frame i. We consider the trajectory mo-
tion vectors {m1, ...,mL}, where mi = (pi+1 −pi)
and pi = (xi, yi). These vectors are known to be
translation invariant. To achieve scale invariance,
they are normalized according to the trajectory
maximum vector magnitude. They are also quan-
tized, using their polar coordinates [7], to increase



their robustness toward noise. The quantized mo-
tion vectors distribution is captured through an his-
togram leading to a descriptor capturing the mo-
tion information in the trajectory.

Bag-of-words (Bow) model [8] is then used to
transform the variable number of trajectory mo-
tion descriptors into a fixed-length vector. In this
paradigm, a video signature is obtained first by en-
coding the descriptors according to a learned code-
book, and by pooling the obtained codes to end
up with a fixed length vector. Saliency coding [9]
along max pooling are used to construct the final
Bow signature.

1.2.2 Bag-of-visterm on keyframes

The Bag-of-Visual-Words (BoVW) approach [8, 10]
is a state-of-the-art representation for visual con-
tent description used in image classification. Ex-
tended to image description, the usual BoVW de-
sign pipeline consists of learning a codebook from
a large collection of local features extracted from a
training dataset, then creating the global feature
of visual signature through coding, pooling and
spatial layout. Recent works addressing this prob-
lem [11, 12, 13, 14, 15, 4] proved the importance of
tuning each of these steps to improve scene classifi-
cation and object recognition accuracy on different
benchmarks.

The pipeline we used is as follows:

• Local visual descriptors: dense SIFTs of
size 128 are extracted within a regular spatial
grid and only one scale. The patch-size is fixed
to 16 × 16 pixels and the step-size for dense
sampling to 6 pixels;

• Codebook: a visual codebook of size 1024 is
created using the K-means clustering method
on a randomly selected subset of SIFTs from
the training dataset.

• Coding/pooling: for coding the local visual
descriptors SIFTS, we also fix the patch-size
to 16 × 16 pixels and the step-size for dense
sampling to 6 pixels. Then for the extracted
visual descriptors associated to one image, we
consider a neighborhood in the visual feature
space of size 5 for local soft coding and the
softness parameter β is set to 10. The max-
pooling operation is performed to aggregate

the obtained codes and a spatial pyramid de-
composition into 3 levels (1× 1, 2× 2, 3× 1) is
adopted for the visual-signature. The weight
is the same on each pyramid level.

Thus, the size of the visual-signature is equal to
1024× (1 + 2× 2 + 3× 1) = 8192.

We also tried the process proposed in [4] that
modify the coding strategy to take into account
the spatial consistency of descriptors. Basically, it
forces SIFT descriptors that are close in the image
domain to be coded on similar codewords.

1.3 Classification

A one-versus-all linear kernel based Support Vec-
tor Machine (SVM) classifier is used, since it has
shown good performances in scene categorization
task when paired with the max-pooling operation
on local features [14, 15].

1.4 Evaluation of submitted runs

Four runs have been submitted, which the results
are summarized in table 1

Run name Description F results L results
CEALIST_1 BoVsoft 0.1137 0.1317
CEALIST_2 BoVlscr 0.1024 0.1119
CEALIST_2 BoVsoft 0.0820 0.1179

+ Motion
CEALIST_4 Motion 0.0070 0.0139

Table 1: Description of the runs submitted and the
results (infAP) on the full (F) and light (L) task

2 Instance Search

2.1 Introduction

Tee Instance Search Task consist of finding video
segments of a certain specific person, object, or
place, given a visual example [2].

We used a three descriptors: Markrs is based on
local feature matching (section 2.2.1), HistHSV is
a simple HSV color histogram (section 2.2.3) and
BoV a bag of visterm similar to the one used in
the SIN task (section1.2.2). The retrieval on each
descriptor was performed with a naive L1 distance



based kNN. Retrieval scores were normalized ac-
cording to different strategies (section 2.3). Finally,
we proposed several fusion schemes to do so (sec-
tion 2.4. Given the results, we evaluated their sig-
nificance with a Wilcoxon signed-rank test.

2.2 Feature extraction

2.2.1 Markrs

The Markrs are local features for geometrical regis-
tration of objects in couple of images. The Markrs
process of image description and matching follows
the well-known framework of keypoint matching de-
scribed in [16, 17]. For this experiment, we used the
SURF scheme [18] to detect salients keypoints and
compute corresponding descriptors, but other de-
scriptors may be used as well within the process
described below. They are normalized with respect
to their self scale and local orientation of gradient.
Then the SURF description is quantized from 64
real values in (−1, 1) into integer values in [0, 255].
This leads to a compact description for each key-
point in less than 80 bytes (including 64 bytes for
the descriptor).

The image matching process includes two filter-
ing step to drop keyframes of the database that are
not close enough to the query. The first filtering
step finds matching keypoints with respect to their
appearance in a query-candidate couple of images.
Valid keypoint matches are considered if they pass
the test of relative nearest-neighbors proposed by
D.Lowe in [16]. The images with the highest num-
ber of matches are top ranked.

The second filtering step selects within the previ-
ous results those that provides a similar geometrical
configuration of keypoints in the query-candidate
couple of images. We avoid considering complete
homographies, preferring simple similarities that
are much fastest to compute. This reduces the com-
plexity of the exhaustive test of models for this ge-
ometrical confirmation. Hence, even a small set of
matching keypoints between two images can lead
to a fit. The final result list is composed of images
having more than p keypoints fitting the geometri-
cal model (p ≥ 5).

This matching process can detect the co-
occurrence of small objects in a query-candidate
couple of images, leading to relative good preci-
sion for CBIR tasks similar to instance search or

duplicate-detection.

2.2.2 Bag-of-visterm

We used the same process as the one described in
section 1.2.2.

2.2.3 Global features

We used a well-known color histogram for global
image description. The color histogram counts the
occurrences of 162 shades in the HSV color space.
The similarity between two images is measured as
the inverse of a dLog distance between two his-
tograms, defined as: [19]:

dLog(q, d) =

i<M∑
i=0

|f(q[i])− f(d[i]) (1)

f(x) =

 0, if x = 0 < α
1, if 0 < x ≤ 1
dlog2 xe+ 1 otherwise

(2)
Where q and d are two histograms with M bins and
d.e is the ceilling function.

2.3 Score normalization

Raw scores for individual feature extractor have
various amplitude. Thus, we tested several nor-
malization schemes of these scores, previously used
for multilingual information retrieval data fusion
[20].The considered normalization schemes are pre-
sented in Table 2. The normman scheme normalizes
the score by the maximal score smax obtained for
this query. The normlin scheme linearly normalizes
scores between 0 and 1. The normgauss scheme is
equivalent to a Gaussian normalization of scores
added to an offset such that they are positive.

normman s′i = si
smax

normlin s′i = si−smin
smax−smin

normgauss s′i = si−smin
sσ

Table 2: Normalization schemes for the scores in
the merging strategy



2.4 Fusion Schemes

A topic is represented by n image queries, them-
selves described according to p descriptors. Hence,
we have to merge n × p lists of results for a given
topic. However, considering the N × P lists of re-
sults at the same level is a global fusion scheme.
In this paper, we studied the effect of two alter-
native fusion strategies, further named query-first
fusion and descriptor-first fusion. These two-steps
fusion schemes consist on merging the result lists
according to queries (resp. descriptors) first, then
merging the resulting lists into a unique final one
(figure 1).

Figure 1: Fusion of results for a given topic defined
by several queries (Q1, Q2, . . . , Qn), according to
several descriptors (D1, D2, . . . , Dp)

Let consider two lists of results, ordered accord-
ing to a their scores. They can be merged according
to several operator [21, 22], acting directly on the
scores or on the rank only. The operators we con-
sidered are given in table 3

In our case, the fusion operator may not be the
same at each fusion level.

CombSUM sf =
∑L

i=1 si

CombMAX sf = maxL
i=1 si

CombMEAN sf = 1
L

∑L
i=1 si

CombMNZ sf = L ∗
∑L

i=1 si

Table 3: Combination operator to merge L lists of
results. They can act on the score or the rank.

2.5 Preliminary experiments

Experiments were conducted on the INS 2011 cor-
pus to determine which strategies were the most
efficients. Globally, the use of two descriptors can
lead to better results when an appropriate fusion
strategy is used. However, most of the time, it
can result into an average results from those ob-
tained with individual descriptors (thus worse than
the best of them). Several results of global fusion
strategy, leading to an improvement over the base-
line alone (Markrs), are reported in table 4.

Descriptor Combination Results
+ weight operator (mAP)
HHSV (g) CombMAX (s) 23.0
HHSV (g) CombMAX (r) 23.6

BoV (gauss) CombMAX (s) 26.6
Markrs CombMNZ (s) 36.9

1.2×Markrs
CombMAX (r) 38.8

+ BoV
300×Markrs

CombMNZ (r) 38.1
+ BoV

300×Markrs
CombSUM (s) 40.6

+ BoV
40×Markrs

CombMAX (s) 40.4
+ BoV

100×Markrs
CombSUM (s) 40.7

+ BoV(g)

Table 4: Results on INS 2011, with a global fusion
(one-step) strategy. Combination operator is ap-
plied on scores (s) or ranks (r). Descriptors may be
normalized with a Gaussian (g) scheme (see table
2)

Results with a query-first fusion strategy is re-
ported in table 5. The Markrs list is obtained
with the CombSUM operator applied on scores.



The Gaussian normalized BoV (BoV (g)) list is ob-
tained with the CombMAX operator applied on
scores. The Gaussian normalized color histogram
(HHSV (g)) list is obtained with the CombMAX
operator applied on ranks. The Markrs list is
weighted to be preponderant, ten times larger than
others. The use of the CombMEAN operator
leaded to poor results, not reported here. Glob-
ally this two-steps fusion strategy result in better
results for all operator, whether applier to scores or
ranks. Moreover, these results are quite the same
for all these operator

Some results with a descriptor-first strategy in
table 6. All descriptors are first merged to obtained
a unique list for each query, using a first combi-
nation operator. For this operation, the Markrs
descriptor is weighted 100 times mores than other
descriptor, such that its results are preponderant.
Then, a second fusion is performed on the query
lists, using a second combination operator. Re-
sults are almost the same as those obtained with
the query-first strategy.

Descriptors Combination mAP
operator

10×Markrs
CombSUM(s) 41.4

+ BoV(g)
10×Markrs

CombSUM(r) 41.1
+ BoV(g)

10×Markrs
CombSUM(s) 41.4

+ BoV(g)
10×Markrs

CombSUM(r) 41.2
+ BoV(g)

10×Markrs
CombMAX(s) 41.2

+ BoV(g)
10×Markrs

CombMAX(r) 41.2
+ BoV(g)

10×Markrs
CombSUM(r) 44.5

+ BoV(g)+ HHSV (g)
10×Markrs

CombMAX(r) 44.4
+ BoV(g)+ HHSV (g)

10×Markrs
CombMNZ(r) 44.3

+ BoV(g)+ HHSV (g)
100×Markrs

CombSUM(r) 45.2
+ BoV(g)+ HHSV (g)

Table 5: Results on INS 2011, with a query-first
strategy. Combination operator is applied on scores
(s) or ranks (r).

Run name Global description Results
CEALIST_1 Query-first fusion 0.1216
CEALIST_2 Markrs alone 0.1135
CEALIST_3 Descriptor-first fusion 0.0269
CEALIST_4 Query-first fusion 0.1215

Table 7: Description of the runs submitted and the
results (mAP) on the INS track.

2.6 Evaluation of submitted runs

Four runs have been submitted, as summarized in
table 7. In details, the runs have been constructed
as following:

• CEALIST 2 is our baseline giving the results
from the Markrs descriptor only. Queries are
merged with CombSUM .

• CEALIST 1 is a query-first fusion of the
three descriptor considered. BoV and HSV
histogram are normalized according to the
normgauss scheme then merged with the
CombMAX operator. The three lists are then
merged with CombSUM on the rank (first
500 only), using an equal weight for BoV and
HSV histogram and a predominant weight for
Markrs.

• CEALIST 4 is another query-first fusion
of the three descriptor considered. BoV and
HSV histogram are normalized according to
the normgauss scheme then merged with the
CombMAX on the rank (limited to 2000 for
BoV and 5000 for HistHSV ). The three lists
are then merged with CombMNZ on the rank
(first 500 only), using an equal weight for BoV
and HSV histogram and a predominant weight
for Markrs.

• CEALIST 3 is a descriptor-first fusion of the
three descriptor considered. The descriptors
are first merged through CombMAX for each
query then the resulting lists are merged with
CombMNZ to get the final topic list.

A Wilcoxon signed-rank test (null hypothesis
is median difference between the pairs is zero)
shows that the difference is significant between
CEALIST_1 and CEALIST_2 (p-value 0.000438), as



Descriptors First Second mAP
combination combination

Markrs + BoV(g) CombMAX(s) CombMNZ(s) 40.6
Markrs + BoV(g) CombMAX(s) CombSUM(s) 41.1

Markrs + BoV(g) + HHSV (g) CombMAX(s) CombMNZ(s) 43.9

Table 6: Results on INS 2011, with a descriptor-first strategy. Combination operators is applied on
scores (s) or ranks (r).
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CEALIST_1 0.1216 x
CEALIST_4 0.1215 0.88 x
IRIM_2 0.1192 0.71 0.66 x
IRIM_4 0.1173 0.06 0.10 0.83 x
IRIM_1 0.1171 <0.01 0.08 <0.01 0.15 x
IRIM_3 0.1162 <0.01 0.07 0.68 0.06 0.08 x

CEALIST_2 0.1135 <0.01 0.02 0.46 <0.01 <0.01 <0.01 x

Table 8: p-value resulting from a Wilcoxon signed-rank test for all our runs and those of IRIM [5].
Significant p-values (below 0.05) are shown in bold. Those displayed as <0.01 are very small and thus
significant.

well as between CEALIST_4 and CEALIST_2 (p-
value 0.019809), but not between CEALIST_1 and
CEALIST_4 (p-value 0.878851).

Contrary to the preliminary experiments, the
Descriptor-first fusion did not lead to good results.
It may be due to the particular nature of the 2011
corpus, composed of quite coherent videos.

Last, we compared significance of results for our
runs and those of IRIM [5] and reported the p-
value in table 8 (significant ones are bold). It shows
that the two best results of both teams are not sig-
nificantly different, while their scores range from
0.1173 to 0.1216. More surprising the two last runs
of IRIM (IRIM_1 and IRIM_3) are significantly less
than CEALIST_1 but not CEALIST_4, while these
two runs are almost the same (similar score and
not significantly different between them). However,
the most surprising result is that the best IRIM run
(IRIM_2) is the only one that is not significantly dif-
ferent from the baseline. To explain this result, we
computed the mAP difference between the baseline
and each IRIM run (i.e the quantities computed in
the Wilcoxon test) and plotted these values in as-
cending order (Fig. 2). Hence, we can see that

IRIM_2 is both strongly better and strongly worse
than the baseline, while other IRIM runs are always
better or similar to the baseline.

Most important points we retain from the INS
2012 experiments are thus:

• The two steps fusion scheme lead to better re-
sults than the global fusion strategy

• However, the descriptor-first strategy can fail
with some heterogeneous corpus. The query-
first strategy is efficient in this case.

• All fusion operator give good results in a
query-first strategy, both with scores and
ranks, except CombMEAN .

• The actual significance of the results should
be studied carefully. The significant differ-
ences between two runs is not strictly corre-
lated to the sorted average scores. In other
words, when runs are sorted according to their
average score (e.g mAP), significant difference
can be intercalated between non significantly
different runs.



Figure 2: Sorted mAP differences of IRIM runs with the baseline (CEALIST 2). While most of IRIM
runs are always better or same as the baseline, the run IRIM 2 is both strongly better and worst than
CEALIST 2.
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